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Abstract In this paper, we study the system of generalized vector quasi-equilib-
rium problems, which includes as special cases the system of vector quasi-equilibrium
problems and the system of generalized vector equilibrium problems, and establish
the existence and essential components of the solution set under perturbations of its
best-reply map. Moreover, we also derive a new existence theorem of Ky Fan’s points
for a set-valued map.
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1 Introduction

The system of generalized vector quasi-equilibrium problems (briefly, SGVQEP)
includes as special cases the system of vector quasi-equilibrium problems (briefly,
SVQEP) and the system of generalized vector equilibrium problems (briefly, SGVEP).
Recently, the study with respect to the SGVQEP has attracted much attention. For
existence results of solutions in this direction, we refer to Wu and Shen (1996), Yu
and Yuan (1998), Deguire et al. (1999), Ansari et al. (2002), Yu (2003), Wu and Yuan
(2003) and reference therein.

Essential component plays a important role in the study of stability. In 1950, Fort
introduced the notion of essential fixed points of a continuous map. In 1952, Kinoshita
introduced the notion of essential components of the set of fixed points of single-val-
ued map. In 1963, Jiang introduced the notion of essential components of the set of
Nash equilibrium points for n-person noncooperative game and proved the existence
of essential components of the set of Nash equilibrium points. In 1986, Kohlberg and
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Mertens studied the stability of Nash equilibrium points and suggested that a satis-
factory solution for a noncooperative game should be set-wise, and they proved that
such a solution is just an essential component of Nash equilibrium points. In 1990,
Hillas proposed another version of stability of Nash equilibrium points and estab-
lished the stability results of the set of Nash equilibrium points under perturbations
of its best-reply map for game problems. For other results of essential components
in this direction, we refer to Yu and Luo (1999), Yu and Xiang (1999), Yang and Yu
(2002) and reference therein.

In this paper, we study the SGVQEP and establish the existence and essential
components of the solution set under perturbations of its best-reply map. Moreover,
we also derive a new existence theorem of Ky Fan’s points for a set-valued map. Our
results are new and differ from those results in the literatures.

2 Preliminaries

Let C be a cone of a topological vector space Y. C is convex if and only if C + C = C,
and pointed if and only if C ∩ (−C) = {θ}, where θ denotes the zero element of Y.
Denote by 2Y the family of all nonempty subset of Y.

Definition 1 Let X and Y be two topological vector spaces and K a nonempty convex
subset of X, and f : K → Y be a vector-valued function. f is called C-continuous at
x0 ∈ K if, for any open neighborhood V of the zero element θ in Y, there exists an
open neighborhood U of x0 in K such that, for all x ∈ U,

f (x) ∈ f (x0) + V + C

and C-continuous on K if it is C-continuous at every point of K.

Definition 2 Let X and Y be two topological vector spaces and K a nonempty convex
subset of X, and F: K → 2Y be a set-valued map.

(1) F is called upper C-semicontinuous at x0 ∈ K if, for any open neighborhood V
of the zero element θ in Y, there exists an open neighborhood U of x0 in K such
that, for all x ∈ U,

F(x) ⊂ F(x0) + V + C

and upper C-semicontinuous on K if it is upper C-semicontinuous at every point
of K;

(2) F is called lower C-semicontinuous at x0 ∈ K if, for any open neighborhood V
of the zero element θ in Y, there exists an open neighborhood U of x0 in K such
that, for all x ∈ U,

F(x) ∩ (F(x0) + V + C) �= ∅
and lower C-semicontinuous on K if it is lower C-semicontinuous at every point
of K;

(3) F is called C-continuous at x0 ∈ K if, it is upper C-semicontinuous and lower
C-semicontinuous at x0 ∈ K; and C-continuous on K if it is C-continuous at
every point of K.
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When F is a vector-valued function, we use symbol ∈ instead of symbol ⊂. In
this case, both of upper C-semicontinuous and lower C-semicontinuous coincide with
C-continuous.

Let X be a topological vector space and K a nonempty, convex and compact subset
of X. Denote by M the set of all upper semicontinuous maps from K to 2K with convex
compact values. For any F, G ∈ M, we define

ρ(F, G) = sup
x∈K

h(F(x), G(x)),

where h is the Hausdorff metric defined on X. It is easy to verify that (M, ρ) is a metric
space.

For each F ∈ M, we denote by S(F) the set of all fixed points of F. By Kakutan-
i-Fan-Glicksberg’s fixed points Theorem (see Aliprantis and Border 1999, pp. 550),
S(F) is a nonempty compact set.

Definition 3 For each F ∈ M, the component of a point x ∈ S(F) is the union of all
connected subsets of S(F) containing x.

Note that the components are connected closed subsets of S(F) (see Engelking
1989, pp. 356), thus they are connected and compact. Since the components of two
distinct points of S(F) either coincide or are disjoint, the components of S(F) form a
decomposition as

S(F) = ∪
α∈�

Sα ,

where � is an index set and for any α ∈ �, Sα is a nonempty connected compact subset
of S(F) and, for any α, β ∈ �, α �= β, Sα ∩ Sβ = ∅.

Definition 4 For each F ∈ M, let A be a nonempty closed subset of S(F). A is said to
be an essential set of S(F) with respect to M if, for each open set O ⊃ A, there exists
an open neighborhood U of F in M such that S(F ′) ∩ O �= ∅ whenever F ′ ∈ U. If a
component Sα of S(F) is an essential set with respect to M, then Sα is said to be an
essential component of S(F) with respect to M.

The following result can be found in Jiang (1963).

Lemma 1 For any F ∈ M, there is at least one essential component of S(F) with respect
to M.

The following result is a basic fact and its proof can be found in Yang and Yu (2002).

Lemma 2 Let Y be a Banach space with a closed, convex, and pointed cone C with
intC �= ∅, where intC denotes the interior of C. Then we have intC + C ⊂ intC.

The following result is a particular form of a maximal element theorem for a family
of set-valued maps due to Deguire et al. (1999, Theorem 1).

Lemma 3 Let K be a nonempty compact convex subset of a Hausdorff topological
vector space X. Suppose that A: K → 2K ∪ {∅} is a set-valued map with following
conditions:
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(1) for each x ∈ K, A(x) is convex;
(2) for each x ∈ K, x �∈ A(x);
(3) for each y ∈ K, A−1(y) = {x ∈ K : y ∈ A(x)} is open in K.

Then there exists x ∈ K such that A(x) = ∅.

Throughout this paper, unless otherwise specified, assume that the index I has at
least two element. For each i ∈ I, let Xi and Yi be two Banach spaces and Ki a non-
empty convex compact subset of Xi. For each i ∈ I, let Ci be a closed, convex and
pointed cone of Yi with intCi �= ∅, where intCi denotes the interior of Ci. Denote by
2Ki the family of all nonempty subsets of Ki.

Denote that Kî = ∏
j∈I,j �=i Kj, K = ∏

i∈I Ki = Ki × Kî, X = ∏
i∈I Xi, where the

product space X is a Tychonoff product space. For each x ∈ K, we can write x = (xi, xî).
For each i ∈ I, let Gi: Kî → 2Ki and Fi: Ki × Kî × Ki → 2Yi be two set-valued maps.
The system of generalized vector quasi-equilibrium problems is: find x = (xi, xî) ∈ K
such that for each i ∈ I,

xi ∈ Gi(xî) and Fi(xi, xî, yi) �⊂ −intCi for all yi ∈ Gi(xî),

where x = (xi, xî) is said to be a solution of the SGVQEP. A SGVQEP is denoted by
{Ki, Gi, Fi}i∈I (briefly, (G, F)).

If Fi = ϕi is a vector-valued function for each i ∈ I, then the SGVQEP coincides
with the SVQEP. A SVQEP is usually denoted by {Ki, Gi, ϕi}i∈I (briefly, (G, ϕ)).

If setting Gi(xî) = Ki for each i ∈ I and each xî ∈ Xî, then the SGVQEP coincides
with the SGVEP, which has been studied in Ansari et al. (2002). A SGVEP is usually
denoted by {Ki, Fi}i∈I (briefly, F).

The SVQEP includes as a special case the following multiobjective generalized
game problems:

For each i ∈ I, let fi: K → Yi be a vector-valued function and let Gi: Kî → 2Ki

be a feasible strategy map. The multiobjective generalized game problem is: find
(xi, xî) ∈ K such that for each i ∈ I, xi ∈ Gi(xî),

fi(yi, xî) − fi(xi, xî) �∈ −intCi for all yi ∈ Gi(xî),

where x is said to be a weakly Pareto–Nash equilibrium point.
For each i ∈ I, setting

ϕi(xi, xî, yi) = fi(yi, xî) − fi(xi, xî)

the SVQEP coincides with the multiobjective generalized game problem, which has
been studied by Yu and Luo (1999) but for real function. A multiobjective generalized
game problem is usually denoted by {Ki, Gi, fi}i∈I (briefly, (G, f )).

For each i ∈ I, setting Gi(xî) = Ki, the multiobjective generalized game problem
coincides with the multiobjective game problem, which has been studied in Yu and
Xiang (1999) and Yang and Yu (2002). Note that the SGVEP includes as a special
case multiobjective game problems.

3 Existence and essential components

We first establish the existence of solutions for the SGVQEP.
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Definition 5 Let X and Y be two topological vector spaces and K a nonempty con-
vex subset of X and C a closed, convex and pointed cone of Y with intC �= ∅. Let
F: K → 2Y be a set-valued map.

(1) F is called C-convex if, for any x1, x2 ∈ K and each t ∈ [0, 1],
F(tx1 + (1 − t)x2) ⊂ [tF(x1) + (1 − t)F(x2)] − C

and C-concave if −F is C-convex;
(2) F is called C-quasiconvex-pseudo if, for any x1, x2 ∈ K and each t ∈ [0, 1],

either F(x1) ⊂ F(tx1 + (1 − t)x2) + C or F(x2) ⊂ F(tx1 + (1 − t)x2) + C

and C-quasiconcave-pseudo if −F is C-quasiconvex-pseudo.

Remark 1 In particular, if Y = R and C = R+ = [0, +∞), then C-convexity and C-
quasiconvexity-pseudo is equivalent to the convexity and the quasiconvexity, respec-
tively.

Example 1 Let N = {1, 2}, X = [−2, −1], Y = R2, C = R2+ = [0, +∞) × [0, +∞).
If f = (f1, f2) = (−x, x), it is easy to verify that f is R2+− convex, but not R2+−
quasiconvex-pseudo.
If g = (g1, g2) = ( 1

x , 1
x ), it is easy to verify that g is R2+− quasiconvex-pseudo, but not

R2+− convex.

Remark 2 Example 1 shows that C-convexity does not imply C-quasiconvexity-
pseudo in the general case, even though convexity does imply quasiconvexity.

For the SGVQEP {Ki, Gi, Fi}i∈I , we define its best-reply map H: K → 2K ∪ {∅} by
H(x) = ∏

i∈I Hi(xî), where

Hi(xî) = {zi ∈ Gi(xî) : Fi(zi, xî, yi) �⊂ −intCi for all yi ∈ Gi(xî)}. (1)

Clearly, x is a solution of the SGVQEP if and only if x is a fixed point of H, where Hi
is defined by (1). Denote by S(H) the set of all fixed points of H.

Theorem 1 Consider a SGVQEP {Ki, Gi, Fi}i∈I . For each i ∈ I, assume that

(1) Gi is continuous on Kî with convex compact values;
(2) Fi(·, ·, ·) is upper −Ci semicontinuous on Ki × Kî × Ki with compact values;
(3) for each (xi, xî) ∈ Ki × Kî, Fi(xi, xî, ·) is Ci− convex;
(4) for each (xî, yi) ∈ Kî × Ki, Fi(·, xî, yi) is −Ci quasiconvex-pseudo;
(5) for each (xi, xî) ∈ Ki × Kî, if xi ∈ Gi(xî), then Fi(xi, xî, xi) �⊂ −intCi.

Then the SGVQEP has a solution.

Proof Define the best-reply map H(x) = ∏
i∈I Hi(xî), where Hi is defined by (1). For

each i ∈ I,

(1) for each xî ∈ Kî, define a set-valued map Ai: Gi(xî) → 2Gi(xî) ∪ {∅} by

Ai(xi) = {yi ∈ Gi(xî) : Fi(xi, xî, yi) ⊂ −intCi} for each xi ∈ Gi(xî).

(a) For any xi ∈ Gi(xî), Lemma 2 and the condition (3) and the convexity of
Gi(xî) imply that Ai(xi) is convex.

(b) For any xi ∈ Gi(xî), the condition (5) implies that xi �∈ Ai(xi).
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(c) For any yi ∈ Gi(xî), the condition (2) implies that the set A−1
i (yi) = {xi ∈

Gi(xî) : yi ∈ Ai(xi)} = {xi ∈ Gi(xî) : Fi(xi, xî, yi) ⊂ −intCi} is open in Gi(xî).
By Lemma 3, there exists a xi ∈ Gi(xî) such that Ai(xi) = ∅, i.e., Hi(xî) �= ∅.

(2) For each xî ∈ Kî, next we verify that Hi(xî) is convex.
For any z1

i , z2
i ∈ Hi(xî) and any t ∈ [0, 1], the convexity of Gi(xî) imply that

tz1
i + (1 − t)z2

i ∈ Gi(xî). By condition (4), assume without loss of generality
that Fi(z1

i , xî, yi) ⊂ Fi(tz1
i + (1 − t)z2

i , xî, yi) − Ci. If tz1
i + (1 − t)z2

i �∈ Hi(xî),
then there exists a y0

i ∈ Gi(xî) such that Fi(tz1
i + (1 − t)z2

i , xî, y0
i ) ⊂ −intCi. We

have Fi(z1
i , xî, y0

i ) ⊂ Fi(tz1
i + (1 − t)z2

i , xî, y0
i ) − Ci ⊂ −Ci − intCi ⊂ −intCi, a

contradiction. Thus Hi(xî) is convex.
(3) Now we verify that Hi is upper semicontinuous on Kî with compact values. By

Theorem 7.16 in Klein and Thompson (1984, pp. 78), it suffices to show that the
Graph(Hi) is closed in K, where

Graph(Hi) = {(zi, xî) ∈ K : zi ∈ Hi(xî)}.
Let (zn

i , xn
î ) be any sequence in Graph(Hi) with (zn

i , xn
î ) → (z0

i , x0
î ). The condition (1)

implies that z0
i ∈ Gi(x0

î ). If z0
i �∈ Hi(x0

î ), there exist y0
i ∈ Gi(x0

î ) such that Fi(z0
i , x0

î , y0
i ) ⊂

−intCi, which implies that there exists an open neighborhood Vi of the zero element
θi such that

Fi(z0
i , x0

î , y0
i ) + Vi ⊂ −intCi.

By the condition (2), there exists an open neighborhood U(z0
i , x0

î , y0
i ) of (z0

i , x0
î , y0

i )

such that

Fi(z′
i, x′

î, y′
i) ⊂ Fi(z0

i , x0
î , y0

i ) + Vi − Ci ⊂ −intCi − Ci ⊂ −intCi,

whenever (z′
i, x′

î, y′
i) ∈ U(z0

i , x0
î , y0

i ). By condition (1), there exist yn
i ∈ Gi(xn

î ) with
yn

i → y0
i . Thus there exists a positive integer N such that (zn

i , xn
î , yn

i ) ∈ U(z0
i , x0

î , y0
i )

whenever n > N, which implies that

Fi(zn
i , xn

î , yn
i ) ⊂ −intCi

whenever n > N, a contradiction.
Thus, by Tychonoff Product Theorem and Theorem 7.3.14 in Klein and Thompson

1984, pp. 88, the best-reply map H is upper semicontinuous with nonempty, convex
and compact values, which imply the best-reply map H is closed with nonempty and
convex values. By Kakutani-Fan-Glicksberg’s fixed points Theorem, the result follows.

For the SVQEP, since ϕi is a vector-valued function, we have following result.

Theorem 2 Consider a SVQEP {Ki, Gi, ϕi}i∈I . For each i ∈ I, assume that

(1) Gi is continuous on Kî with convex compact values;
(2) ϕi(·, ·, ·) is −Ci− continuous on Ki × Kî × Ki;
(3) for each (xi, xî) ∈ Ki × Kî, ϕi(xi, xî, ·) is Ci-convex or Ci-quasiconvex-pseudo;
(4) for each (xî, yi) ∈ Kî × Ki, ϕi(·, xî, yi) is −Ci-quasiconvex-pseudo;
(5) for each (xi, xî) ∈ Ki × Kî, if xi ∈ Gi(xî), then ϕi(xi, xî, xi) �∈ −intCi.

Then the SVQEP has a solution, i.e., there exists a point x ∈ K such that xi ∈ Gi(xî)

and

ϕi(xi, xî, yi) �∈ −intCi, for all yi ∈ Gi(xî).
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The proof of Theorem 2 is completely analogous to that of Theorem 1 and is omitted.

Remark 3 The convexity of Gi(xî) and the condition (3) in Theorem 2 imply that
Ai(xi) = {yi ∈ Gi(xî) : ϕi(xi, xî, yi) ∈ −intCi} is convex for each xî ∈ Kî and each
xi ∈ Gi(xî), but analogous statement is not true in Theorem 1. Thus, Theorem 1 does
not contain Theorem 2 as a special case.

By Theorem 2, we have following result.

Corollary 1 Consider a multiobjective generalized game problem {Ki, Gi, fi}i∈I . For
each i ∈ I, assume that

(1) Gi is continuous on Kî with convex compact values;
(2) fi is continuous on K;
(3) for each xî ∈ Kî, fi(·, xî) is Ci− quasiconvex-pseudo.

Then the multiobjective generalized game problems has a solution, i.e., there exists a
point x ∈ K such that xi ∈ Gi(xî) and

fi(yi, xî) − fi(xi, xi) �∈ −intCi for all yi ∈ Gi(xî).

Proof For each i ∈ I, setting

ϕi(xi, xî, yi) = fi(yi, xî) − fi(xi, xî),

it is easy to verify that the conditions of Theorem 2 hold. Hence the result follows.

Remark 4 Corollary 1 is a new existence theorem of weakly Pareto–Nash equilibrium
points for the multiobjective generalized game problems.

For the SGVEP, since there has not the constraint map, by Theorem 1, we have
following result.

Theorem 3 Consider a SGVEP {Ki, Fi}i∈I . For each i ∈ I, assume that

(1) for each yi ∈ Ki, Fi(·, ·, yi) is upper −Ci-semicontinuous on Ki × Kî with compact
values;

(2) for each (xi, xî) ∈ Ki × Kî, Fi(xi, xî, ·) is Ci-convex;
(3) for each (xî, yi) ∈ Kî × Ki, Fi(·, xî, yi) is −Ci-quasiconvex-pseudo;
(4) for each (xi, xî) ∈ Ki × Kî, Fi(xi, xî, xi) �⊂ −intCi.

Then the SGVEP has a solution, i.e., there exists a point x ∈ K such that

Fi(xi, xî, yi) �⊂ −intCi for all yi ∈ Ki.

The proof of Theorem 3 is completely analogous to that of Theorem 1 and is omitted.

Remark 5 Note that Theorem 1 does not contain Theorem 3 as a special case.
If I is a singleton, the method used in Theorem 1 is invalid. In the case, we obtain

following existence theorem of Ky Fan’s points for a set-valued map directly by
Lemma 3.

Theorem 4 Let F: K × K → 2Y be a set-valued map. Assume that

(1) for each y ∈ K, F(·, y) is upper −C-semicontinuous on K with compact values;
(2) for each x ∈ K, F(x, ·) is C-convex;
(3) for each x ∈ K, F(x, x) �⊂ −intC.



634 J Glob Optim (2006) 36:627–635

Then there exists a point x ∈ K such that

F(x, y) �⊂ −intC for all y ∈ K.

Proof Define the set-valued map A: K → 2K ∪ {∅} by

A(x) = {y ∈ K : F(x, y) ⊂ −intC} for each x ∈ K.

The condition (2) and Lemma 2 imply that for each x ∈ K, A(x) is convex, and the
condition (3) implies that for each x ∈ K, x �∈ A(x).

For each y ∈ K, A−1(y) = {x ∈ K : y ∈ A(x)} = {x ∈ K : F(x, y) ⊂ −intC},
i.e., for each x ∈ A−1(y), we have F(x, y) ⊂ −intC, which implies that there is an
open neighborhood V of the zero element θ of Y such that F(x, y) + V ⊂ −intC.
The condition (1) implies that there exists an open neighborhood O(x) of x such that
F(x′, y) ⊂ F(x, y) + V − C ⊂ −intC − C ⊂ −intC whenever x′ ∈ O(x), i.e., the set
A−1(y) is open in K.

Hence the result follows by Lemma 3.

Remark 6 Theorem 4 is a new existence theorem of Ky Fan’s points for a set-valued
map and it contains as a special case the existence theorem of Ky Fan’s points of a
vector-valued function in Yang and Yu (2002).

Next we establish the existence of essential components of the solution set for the
SGVQEP.

Let Q be the collection of all SGVQEP satisfying the conditions of Theorem 1. For
any q ∈ Q, Theorem 1 implies that q has at least one solution. We denote by N(q) the
solution set of q. Clearly, N(q) = S(H), where H is the best-reply map of q.

Definition 6 Let q ∈ Q and Sα a component of N(q). Sα is said to be essential if it, as
a component of S(H), is an essential component of S(H) with respect to M, where H
is the best-reply map of q.

Theorem 5 For any q ∈ Q, there is at least one essential component of N(q).

Proof For any q ∈ Q, by the proof of Theorem 1, we know H ∈ M, where H is the
best-reply correspondence of q. Hence the result follows by Lemma 1.

Remark 7 Those results of essential components for multiobjective (generalized)
game problems in Jiang (1963), Kohlberg and Mertens (1986), Yu and Xiang (1999),
Yu and Luo (1999) and Yang and Yu (2002) are established under perturbations of the
payoff function and feasible strategy correspondence, but Theorem 5 is established
under perturbations of the best-reply map. Thus, Theorem 5 does not contain them as
special cases even though the SGVQEP does contain the multiobjective (generalized)
gave problem as a special case.
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